Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment.
نویسندگان
چکیده
A technique is described for measuring the approximate exchange rates of the more labile amide protons in a protein. The technique relies on a comparison of the intensities in 1H-15N correlation spectra recorded with and without presaturation of the water resonance. To distinguish resonance attenuation caused by hydrogen exchange from attenuation caused by cross relaxation, the experiment is repeated at several different pH values and the difference in attenuation of any particular amide resonance upon presaturation is used for calculating its exchange rate. The technique is demonstrated for calmodulin and for calmodulin complexed with its binding domain of skeletal muscle myosin light chain kinase. Upon complexation, increased amide exchange rates are observed for residues Lys75 through Thr79 located in the 'central helix' of calmodulin, and for the C-terminal residues Ser147 and Lys148. In contrast, a decrease in amide exchange rate is observed at the C-terminal end of the F helix, from residues Thr110 through Glu114.
منابع مشابه
Dissection of the pathway of molecular recognition by calmodulin.
Amide hydrogen exchange has been used to examine the structural dynamics and energetics of the interaction of a peptide corresponding to the calmodulin-binding domain of smooth muscle myosin light chain kinase (smMLCKp) with calcium-saturated calmodulin. Heteronuclear NMR (15)N-(1)H correlation spectroscopy was used to quantify amide proton exchange rates of the uniformly (15)N-labeled domain b...
متن کاملTriple - Resonance Multidimensional NMR Study of Calmoduh Complexed with the Binding Domain of Skeletal Muscle Myosin Light - Chain Kinase : Indication of a Conformational Change in the Central Helix ?
ABSIIEACT: Heteronuclear 3D and 4D NMR experiments have been d to obtain W, IT, and backbone chemical shift assignments in Ca2+-loaded dmodulin complexed with a 26residue synthetic peptide (M13) corresponding to the calmoddin-binding domain (residues 577402) of rabbit skeletal muscle myosin light-chain kinase. Comparison of the chemical shift vaIues with those observed in peptidefree calmodulin...
متن کاملRabbit skeletal muscle myosin light chain kinase. The calmodulin binding domain as a potential active site-directed inhibitory domain.
A synthetic peptide modeled after the calmodulin (CaM)-binding domain of rabbit skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys5-Lys-Asn-Phe-Ile-Ala10-Val-Ser-Ala-Ala-+ ++Asn15-Arg-Phe-Glycyl amide (M5), inhibited the CaM-independent chymotryptic fragment of the enzyme, C35 (Edelman, A. M., Takio, K., Blumenthal, D. K., Hansen, R. S., Walsh, K. A., Titani, K., and Krebs, E. G. (1...
متن کاملCalmodulin and myosin light-chain kinase of rabbit fast skeletal muscle.
1. It is confirmed that myosin light-chain kinase is a protein of mol.wt. about 80,000 that is inactive in the absence of calmodulin. 2. In the presence of 1 mol of calmodulin/mol of kinase 80-90% of the maximal activity is obtained. 3. Crude preparations of the whole light-chain fraction of rabbit fast-skeletal-muscle myosin contain enough calmodulin to activate the enzyme. A method for the pr...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomolecular NMR
دوره 1 2 شماره
صفحات -
تاریخ انتشار 1991